首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41371篇
  免费   1830篇
  国内免费   2340篇
  2023年   395篇
  2022年   403篇
  2021年   793篇
  2020年   820篇
  2019年   1032篇
  2018年   906篇
  2017年   876篇
  2016年   978篇
  2015年   1269篇
  2014年   2105篇
  2013年   2971篇
  2012年   1625篇
  2011年   1677篇
  2010年   1379篇
  2009年   1654篇
  2008年   1741篇
  2007年   1773篇
  2006年   1705篇
  2005年   1719篇
  2004年   1779篇
  2003年   1629篇
  2002年   1390篇
  2001年   1149篇
  2000年   1036篇
  1999年   1082篇
  1998年   989篇
  1997年   853篇
  1996年   824篇
  1995年   943篇
  1994年   929篇
  1993年   767篇
  1992年   756篇
  1991年   615篇
  1990年   584篇
  1989年   469篇
  1988年   515篇
  1987年   412篇
  1986年   369篇
  1985年   455篇
  1984年   492篇
  1983年   284篇
  1982年   382篇
  1981年   215篇
  1980年   195篇
  1979年   169篇
  1978年   120篇
  1977年   80篇
  1976年   82篇
  1974年   35篇
  1973年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979 nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4 × 10−2 to 3.8 × 10−1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57–1800 with Mn2+ and 150–4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).  相似文献   
42.
Eleutheronema tetradactylum is an economically important fish species in China water. To investigate the genetic diversity and describe population structure of it, an 1151 base pair (bp) fragment of the mitochondrial DNA Cytb sequence was analyzed in 120 individuals from four populations in the East China Sea and the South China Sea. A total of 16 haplotypes were defined by 24 variable nucleotide sites. High level of haplotype diversity and low nucleotide diversity were observed in all populations. The results of AMOVA detected that 89.44% of the genetic variation occurred within populations. Significant genetic differentiations were detected among populations (0.05097, P < 0.05), but no large-scale regional differences were detected. Analysis of neutral evolution and mismatch distribution suggested no recent population expansion happened. The present results provided new information for genetic assessment, fishery management and conservation of this species.  相似文献   
43.
Raillietina saudiae is a well-studied avian gastrointestinal parasite belonging to the family Davaineidae and is the most prevalent cyclophyllid tapeworm infecting pigeon in Saudi Arabia. The present study considered as a complementary analysis of Al-Quraishy et al. (2019; Parasitol Int 71 , 59–72) with molecular studies for two ribosomal DNA genes employed for precise recognition of this Raillietina species. The annotated partial 18S and 28S rDNA gene regions were found to be 888 and 900 bp long that utilized further to elucidate their genetic relationships at species level using maximum likelihood method. The query sequence of R. saudiae is well aligned and placed within the Davaineidae family, with the same clade of all species of Raillietina that well separated from other cyclophyllidean cestodes especially taeniid and hymenolepid species. Sequence data recorded the monophyly of Raillietina species. The current phylogeny supports the usage of the partial 18S and 28S rDNA genes as reliable markers for phylogenetic reconstructions.  相似文献   
44.
A CII-responsive promoter within the Q gene of bacteriophage lambda   总被引:2,自引:0,他引:2  
F H Stephenson 《Gene》1985,35(3):313-320
  相似文献   
45.
《Cell reports》2020,30(5):1373-1384.e4
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   
46.
1. Feeding behaviour of generalist and specialist predators is determined by a variety of trophic adaptations. Specialised prey‐capture adaptations allow specialists to catch relatively large prey on a regular basis. As a result, specialists might be adapted to exploit each item of prey more thoroughly than do generalists. 2. It was expected that obligatory specialist cursorial spiders would feed less frequently than generalists but for a longer time and, thus, that their foraging pause would be longer. First, the feeding frequencies of three generalist spider species (Cybaeodamus taim, Harpactea hombergi, Hersiliola sternbergsi) were compared with those three phylogenetically related specialist species: myrmecophagous Zodarion rubidum, and araneophagous Nops aff. variabilis and Palpimanus orientalis. 3. Generalists captured more prey, exploited each item of prey for a significantly shorter time, and had a shorter foraging pause than was the case for specialists. Generalists also gained significantly less relative amount of prey mass than did specialists. 4. Second, the study compared the prey DNA degradation rate in the gut of generalists and specialists by means of PCR. The degradation rate was not significantly different between specialists and generalists: the detectability half‐life was estimated to exist for 14.3 days after feeding. 5. This study shows that the feeding strategies of cursorial generalist and obligatory specialist spiders are different. Obligatory specialists have evolved a feeding strategy that is based on thorough exploitation of a few large prey, whereas generalists have evolved a strategy that is based on short exploitation of multiple small items of prey.  相似文献   
47.
《Cell reports》2020,30(5):1342-1357.e4
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   
48.
A bacterial cDNA clone was identified carrying one third of the nucleotides coding for elongation factor EF-1 alpha from the brine shrimp Artemia. The sequence of codons corresponds with the known sequence of amino acids of EF-1 alpha in the region involved.  相似文献   
49.
A simple, rapid, and inexpensive method for the preparation and purification of chloroplast DNA (cpDNA) from pea has been developed. The crucial step is the isolation of chloroplasts in a medium of high ionic strength (I congruent equal to 1.40 M). CpDNA from pea prepared according to this method has successfully been used for restriction enzyme mapping, Southern transfers, and cloning.  相似文献   
50.
Random amplified polymorphic DNA (RAPD) markers are used to estimate interspecific variation among mangrove and non-mangrove Heritiera fomes, H. littoralis and H. macrophylla. All the species have 2n = 38 chromosomes, with minute structural changes distinguishing the karyotype of each species. Significant variation of 4C DNA content occurs at the interspecific level. Interspecific polymorphism ranged from 14.09% between H. fomes and H. littoralis to 52.73% between H. fomes and H. macrophylla. H. macrophylla showed wide polymorphism in the RAPD marker with H. littoralis (51.23%) and H. fomes (52.73%). Two distinct RAPD products obtained from OPA-10 (1000 bp) and OPD-15 (900 bp) found characteristic molecular markers in H. macrophylla , a species from a non-mangrove habitat. H. macrophylla was more distantly related to H. fomes [genetic distance (1-F) = 0.305] than to H. littoralis [genetic distance (1-F) = 0.273]. H. littoralis was of a closer affinity to H. fomes [genetic distance (1-F) = 0.218] than to H. macrophylla.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号